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ABSTRACT

The linear stability of the Batchelor (1964) vortex is investigated. Particular emphasis

is placed on modes found recently in a numerical study by Khorrami (1991). These modes

have a number of features very distinct from those found previously for this vortex, in-

cluding (i) exhibiting small growth rates at large Reynolds numbers and (ii) susceptibility

to destabilisation by viscosity. In this paper these modes are described using asymptotic

techniques, producing results which compare very favourably with fully numerical results at

large Reynolds numbers.
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1. Introduction

Stability analysis of streamwise vortices plays an important role in

such diverse areas as wake-hazard reduction, combustor optimization, and

turbulent boundary-layer structure. Employing the Batchelor vortex

(Batchelor 1964) for the mean velocity profile, a great deal of effort

has been directed towards understanding the stability characteristics

of a trailing-line vortex; the numerical works of Lessen, Singh &

Paillet (1974), Lessen & Paillet (1974 and Duck & Foster (1980) should be

mentioned. Using asymptotic analysis, the findings of the above authors

were confirmed by many investigators, tncluding Stewartson (1982),

Leibovich and Stewartson (1983), Stewartson & Capell (1985),

Stewartson & Brown (1985), Duck (1986), and Stewartson & Leibovich (1987).

These asymptotic studies reveal the complex nature and structures of the

inviscid modes with negative azimuthal wavenumbers. Furthermore, they

showed the intricacies and difficulties associated with the numerical

computations of these instabilities. However, most of the above studies

treated only inviscid disturbances, and with the possible exception of the

work of Maslowe & Stewartson (1982), viscosity was believed to have a

stabilizing influence.

Recently, using a numerical method, Khorrami (1991) found new

viscous modes of instability for the Batchelor vortex. The two

reported modes are for azimuthal wavenumbers which previously were

thought to be stable. Furthermore, Khorrami found these modes differ

from the inviscid disturbances studied previously in two respects. First,

there are no higher modes associated with them, and second they have

growth rates which are generally orders of magnitude smaller. In

light of the above, it seems quite unlikely for these new

instabilities to have structures similar to the inviscid

perturbations reported by previous investigators. However, regarding these
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modes,numerical methodsare not the proper tool for providing

either scale and structural information or a limiting analysis near the

neutral curves.

This paper is an effort to address these concerns, as well as

to provide firmer grounds for the existence of the instability modes

with positive (and zero) azimuthal wavenumbersfor the Batchelor vortex.

combination of asymptotic and numerical analysis is presented.
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2. Problem Formulation

If (u*,v*,w*) denote the dimensional velocity components in the

radial (r*) azimuthal (0) and axial (x*) directions respectively,

then the similarity solution of swirling wake flows at high Reynolds

numbers due to Batchelor (1964) may be written

• co -n (2 1)w0 = (l-e ) •
r

uo* = U0 - COe-_ log [ UOx* ] + c02 Q(TI)
8vx* v 8vx*

(2.2)

v is the kinematic viscosity of the (incompressible) fluid, L is a

constant (akin to a drag coefficient), CO is the circulation at

large radius, and

Q(_) = e -q {log_ + ei(q) - 0.807}

+ 2 ei(_) 2ei(2_),

where

I_ e'_ei(n) = _ d{. (2.5)

Batchelor (1964) showed the term involving Q(_) in (2.2) is

numerically much smaller in magnitude than the other terms, and

consequently will be neglected. Similar assumptions have been implemented

by previous studies on the stability of this class of vortical flow, as

detailed in the previous section. Following Lessen et al. (1974), we

scale velocity by

(2.4)

where _ = _Lt].L.__ , (2.3)
4vx*
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C02 U0x* LU02
Us - log _+_

8vx* v 8vx*'
(2.6)

and length scales by

rs = [ 4vx* ½} (2.7)

This leads to a non-dimensional mean-flow profile given by

UO _r 2

U=l_s - e , (2.8)

W = fl (1-e "r2) (2.9)
r

whe re
CO

q = _ , (2.10)

and r = r*/r s = _. (2.11)

We now write the velocity field as the sum of the mean flow together

with a small amplitude perturbation, viz

u = Us(U+5_ ),

v = Us ,

w = Us(W+8_), (2.12)

whilst the pressure is written as

P = PUo2[I'I+SP], (2.13)

where

C02U 0

- 2Ql(r), (2.14)
8vx*U s

with

(1.e'r2)+
Ql(r) = r 2ei(r 2) 2ei(2r2). (2.15)

A tilde quantity here represents the perturbation about the mean

state and 8 is the (small) perturbation amplitude. We now make the

further assumption that U and W (and indeed also U0) are independent

of x*. This will generally be an improper assumption, and is equivalent

to a parallel flow approximation (which has been used as an
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assumption in numerous,diverse, stability investigations previously).

However,we justify this step on the following grounds. First, one of

the primary aims in this paper is to develop asymptotic theories to

comparewith previous numerical results, which were all basedon

the sameparallel flow approximation. Second, since to leading order the

solutions to which weconcern ourselves turn out to be inviscid in form, it

can be shownthat to first order the parallel flow approximation is a

right and proper one.

Wenow return to consideration of the form to be taken for the

perturbation quantities. Wewrite

(u,v,w,p) = {F(r),iG(r),H(r),P(r))

where _ and n

and c = cr + i ci is the complexwavespeed.

problem remains unaltered if weuse
.r 2

U=e

exp{i(_x+n0-_ct},

(2.16)

are the axial and azimuthal wavenumbers respectively,

It turns out that the

(2.171

as the mean axial velocity distribution, provided we also replace

"c" by "-c", "W" by "-W" and "P" by "-P" The only

net effect of this is on c r, whilst the important amplification rate

c i is totally unaffected.

If we then substitute (2.12), (2.13), and (2.16) into the equations

of motion, and consider terms solely of 0(8), we then obtain

G' + _G+ o.F + n _H= 0, (2.18)
r r

G'' iG' i n2+l a2

+ ]_2- 7 H + P' = O, (2.19/
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H' ' 1 H' 1 n2+l }].

dW W 2n
(3 + i nP= 0, (2.20)

r

F" 1 1 n2

dU
+ i ._ O + ictP = O,

(.IF
(2.21)

where a prime denotes differentiation with respect to the radial coordinate.

Here the Reynolds number is defined as

and

Re = Usrs (2.22)
V

nW
= a(U-c) +7"-" (2.23)

The boundary conditions that must be imposed on this system are'

at r=0,

for

for

for

n = 0, G(0) = H(0) = F'(0) = P'(0) = 0,

n = ±1, G'(0) = G(0):.tH(0) = F(0) = P(0) = 0,

n > 1, F(0) = G(0) = H(0) = P(0) = 0, (2.24)

whilst as r _ _,

F(r), G(r), H(r), P(r) _ 0. (2.25)

In the following sections we study the above system in the limit

as Re 4_.
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3. The eeneral leading order behaviour as Re 4-

A number of papers previously addressed the inviscid limit of the

system (2.18) - (2.21), (2.24), (2.25), in particular for modes which

exhibit finite temporal growth rates (_ci) in this limit. Rather than

concern ourselves with these modes, we focus on another family of modes

found numerically by Khorrami (1991). These exhibit significantly

diminishing growth rates with a decrease in viscosity. Inspection

of a number of these results, and others not reported, suggests the

following two general characteristics of these modes as

Re 4 ®: (i) c r = 0(I) and (ii) c i = 0(Re-l). These trends strongly

suggest we seek an asymptotic expansion to our solution of the form

{F,G,H,P} = {F0,G0,H0,P0} + Re'I{F1,G1,H1,P1} + 0(Re'2),

c = co + Re'l c 1 + 0(Re-2),

where we expect c o to be real. Substituting (3.1), (3.2)

where

Indeed,

(2.18)-(2.21) and taking just 0(1)

(inviscid) system of equations

GO + G0 + ct F0 + nil0 0,
r r

_0 GO + 2 wHOr = P0',

(P0 F0 + U'G0 = "°ff'0,

cP0 HO + (W'-_-Wr)G0= . r '

nW
q_0 = a(U -c o ) + 7"

(3.1)

(3.2)

into

terms yields the"following

(3.3)

(3.4)

(3.5)

(3.6)

F0

(3.7)

and H0 may be eliminated between these equations to

r2_0

n2+a2r2
P0, (3.8)

by Duck and Foster (1980)"

dCo_-[ n rW)'+ , r2V'. _1] GO+
r2q)0 r

yield the following ordinary differential equations as determined
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or symbolically

L1 {Go,Po} = O,

together with

dPo f (W2r2) '
_7- = [ _0 -

r3_o

or symbolically

(3.9)

(3.10)

(3.13)

in a generalized eigenvalue format.

coefficient matrices, then

DX = oEX,

That is if D and E represent the

L2 (G0,P0} = 0. (3.11)

The boundary conditions may be simply inferred from (2.24) and (2.25).

Equations (3.8), (3.10) (and equivalent) have been investigated

by a number of authors (e.g. Lessen et al 1974, Duck & Foster 1980), in

particular for complex values of the wavespeed co . For this study,

we carried out a similar investigation but sought real values of co .

A Chebyshev spectral collocation method was employed to perform the

numerical tasks throughout this study, since spectral techniques are

well known for their accuracy and fast convergence rate. The

mathematical theory of such methods is found in Gottlieb & Orszag

(1977) and Gottlieb, Hussaini & Orszag (1984) and is not presented here.

Its implementation for the stability of swirling flows is given in detail

by Khorrami, Malik & Ash (1989), and readers are referred to that

paper for further information. Briefly, the method consists of

expanding each perturbation eigenfunction in a truncated Chebyshev

series, for example

N

G(_) = _ akTk(_), (3.12)
k=0

where _ is the independent variable in Chebyshev space. The

governing equations (3.3 and (3.6), in discretized form, are then arranged
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where the frequency _ = ac

represented by

= [G H F p]T

It should be realized that

is the eigenvalue, and the eigenvector X is

(3.14)

E is a singular matrix. The singularity

is removedby addition of the term y_p (which is called an artificial

compressibility factor) to the continuity equation (see Malik & Poll

1985), wherey is a small parameter of the order of 10-18. The effect of

this on the computedphysical eigenvalues is negligible as reported by

Khorrami et al. (1989). The methodis global and therefore the entire

eigenvalue spectrum is obtained in a single run. The complexgeneralized

eigenvalue solver employedis the IMSLQZroutine 'EIGZC'.

The outer boundary conditions were enforced at rmax = 100, and the

numberof ChebyshevPolynomials required varied dependingon flow

conditions, but usually was in the range between60 and 80. At each

step, care was taken to ensure that results were at least six or

seven significant figures accurate. The eigenfunctions were obtained

using an inverse Rayleigh's method(see Wilkinson 1965). The

discretization for the local schemewasalso spectral; actually, the same

matrices D and E were used to computethe eigenfunctions.

Since it turns out that results from this study for n = 0 are

somewhatdifferent from those of n _ 0, this has important implications on

the asymptotic structure of the solution. Consequently, we shall consider

the axisymmetric case separately.
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4. Axis_vrranetrie (n=O) modes

For n = 0, our numerical scheme produced results for wavespeed c O

over a range of values of swirl parameter q and axial wavenumber _,

which had the following general features: (i) a number of distinct, real

modes exist, (ii) all these modes have c o < 0, and (iii) these modes

were quite distinct from those of other studies (e.g. Lessen et al. 1974,

Duck & Foster 1980), for which c i ¢ 0. Indeed our routine was able

to generate these other modes, which served as a useful check on the

accuracy of our scheme. Results for c o for the case n = 0, q = 1.0,

over a range of a are presented in Fig.1 where two distinct modes are

shown. We believe these to be the two most important/dominant in this

case. We refer to the mode represented by a solid line as mode I, and that

represented by a broken line as mode II.

Note that the significance of c o < 0 is that no critical layers

exist (i.e. 90 _ 0 for all r), a feature that does lead to certain

simplifications.

The key question now is whether these modes are stable or unstable,

since the study so far only reveals them to be neutrally stable in the

limit of large Reynolds numbers. To determine the effects of viscosity

on these modes, we must consider terms 0(Re-l) in (2.18) (2.21).

After some algebra, we obtain the following two first order equations for

and PI:

LI(G1,P1} = Ra,

L2(GI,P1} = Rb.

We may write

Ra = Ral + ic 1Ra2,

G1

(4.1)

(4.2)

Rb = Rbl + ic 1Rb2, (4.3)
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where
nR3 aR 1

R

al r_0 90

Rb 1 = . R2 + 2....W.Wr_0R3 ' (4.4)

= = [ nHo ]Ra2 " qo-'0 --F- + aF0 '
(4.5)

Rb2 =- ct [ GO - 2Wrq_0H0 ],
(4.6)

where

, n 2
, 1 F0 + ( r-'2 + a2)F0,R1 = _ F0 ' - (4.7)

, 1 G0, + [ n2+._.._1 + _2 ]G O
R2 = " GO' - 7 r2

(4.8)

2n
+ -- H0,

r 2

, 1H0, + [ n2+lR3 = . H0 ' - 7 r2

2n
+ --G 0.

r 2

+ ct2 ] H0

(4.9)

Here we retain n since these equations are also useful for other

values of n.

In order that (4.1), (4.2) have a solution, with boundary conditions

given by (2.24), (2.25), we must have

- i G+ Ra 1 Rbl

c 1 =

I_[ G+ Ra2 + P+ Rb2 ]dr

(4.10)

where G+ and P+ are the functions adjoint to the system (3.8),

(3.10), i.e.

dG+
_-... = - [ n(rW)_ L? r2U' 1

r2_0 " T ]6+

[ _0 - (W2r2)' ] P+
r3_ 0

(4.11)
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dP+ n2+a2r 2 ]G + + 2nW p+,
Jr- [ r2q_0 r2"-'_0

with boundary conditions

P+(0) = G+'(0) = 0

P+'(0) = G+(0) = 0 if

P+(0) = G+(0) = 0 if

and P+, G+ _ 0 as r _ -, for all n.

if n=0,

(4.12)

(4.13)

Note that due to the nature of the solution for cO real, c 1 must be

imaginary. The adjoint system (4.11)-(4.!2) is discretized similarly as in

the case of the governing equations (3.3)-(3.6). However, owing to the

non-linear occurence of _0 in (4.11) which results in a quadratic term for

the frequency, _, a slightly different approach is taken. Here, the

eigenvalues were obtained using a companion matrix method. The method is

very straight-forward (see Bridges & Morris 1984 and Khorrami et al.

1989), and involves linearizing the quadratic term by the following

transformation:

P+ - _P+ = 0, (4.14)

which leads to a third equation for the adjoint set. For this case,

the eigenvector _ in (3.13) then becomes

= [G+ p+ _+]T. (4.15)

It must be mentioned that for each computation, the computed eigenvalue

spectrum of the adjoint system matched the spectrum associated with the

original set i.e. (3.3) (3.6). This is an independent check on the

accuracy and integrity of our results.

To obtain c 1, a Gauss - Chebyshev quadrature is employed to

evaluate the integrals of (4.10); the procedure is straightforward.

To ensure accurate results, the number of Chebyshev polynomials, N,

was increased until c 1 had converged to at least five significant

figures. Typically 90 to 100 polynomials were more than sufficient
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to obtain the required accuracy. Results for oi = lm {ae_}

for the case n = O, q = 1.0 are shownon Fig.2 for modeI, for

Re = 5000 and 10,000. It is clear that the first of these

modesis destabilised over a range of a with the introduction of the

effects of viscosity. Meanwhile, the results for oi for modeII are

shownin Fig.3, and it is clearly seen that viscosity stabilizes this

mode. Also shown(on Fig.4) are results for _i = lm {_ci} for mode I

obtained using the fully viscous routine of Khorrami (1991), at the

same values of q and Reynolds numbers. We see that the fully viscous

results appear to exhibit an upper neutral point which is predicted

extremely effectively by our asymptotic results. The growth rate

ac i in the region of the upper neutral point is also predicted accurately

by asymptotic theory. However, there is an important point of disagreement

between the Re >> 1 results and those for the full viscous equations,

that concerns the nature of ac i as a _ O. According io our asymptotic

theory this quantity approaches a finite value as a 4 O, whilst the fully

viscous computation predicts a (sharp) drop off at small values of a.

However, this point of disagreement is quite clear. If Ioc 1]

approaches a constant value as a _ O, then c 1 = O(1/a) as a 4 O,

and hence a breakdown in the wavespeed expansion (3.2) must occur.

Additionally, if n = O, it is also clear that as a 4 O, 9 _ 0

(for bounded c) for all r. Specifically this breakdown must

occur when a = O(Re'l), and hence we define a scaled axial wavenumber

= Re _ = 0(1). (4.16)

Guided by our previous results as a _ O, and by consideration of the

order of magnitude of various terms in the governing equations,

for _ = 0(1) we must have

F = Re Fo(r) + O(1),

G = Go(r) + O(Re-l),



H = Re H0(r) + 0(1),

P = Re P0(r) + 0(1), (4.17)

and the expansion for the complex wavespeed (3.2) is retained.

into (2.18)(4.17)

order

Substituting

(2.21) and implementing (4.16), we obtain to leading

. GO

GO' + T" + _ F0 = 0,

2WH0

r - P0r '

H0" " 71H0' + [ " i_c0 + i_U + n2+lr--._ ]

[ dw w]  o=O,+ i a--/. + i 7

, n21 bo [ iaoo+ ÷- ]F0' ' - T r2

dU G0 + i& P0 = 0,+ ii]'?"

(4.18)

(4.19)

A

H0

(4.20)

HO

(4.21)

where the appropriate boundary conditions may be inferred from

(2.24)-(2.25). The above system is then an eigenvalue problem for

c0(_), and is solved using a simplified form of the viscous routine

used by Khorrami (1991). However, owing to the absence of the

eigenvalue term in the r-momentum equation, matrix E becomes singular.

Here the singularity is removed via a procedure which utilizes row and

column operations (see Metcalfe & Orszag 1973). In this procedure,

the rank of matrices D and E is reduced first and the eigenvalues

are then obtained using the QZ routine. Results for Im{ac0(&)}

are shown in Fig.5 for the case q = 1.0, first mode. It is quite clear that

a lower neutral point is predicted (at _ = 90), whilst as _ _ _,

Im{fic0(fi)} d 2.3 approximately. This is in agreement with the values shown

on Fig.2 as a 4 0. Indeed a routine asymptotic analysis of the system
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(4.18) - (4.21) as & 4 - confirms a correct asymptotic match with

the a = 0(1), a _ 0 solution.

Thus, to summarise, we are able to predict (using two asymptotic

analyses) both the upper and lower neutral points of this particular

unstable mode as well as the temporal growth rates of the full

viscous equation results (Fig.4). Furthermore, the system

(4.18)-(4.21) was also solved for the second (stable) mode, and it was

found that this remained stable over the entire range of &. It should at

this juncture be emphasised, however, that as a 4 0, the use of the

parallel flow approximation is likely to become increasingly questionable.

In the following section we go on to consider the n _ 0 modes, paying

particular attention to cases for which n = 1, although there

are some similarities with the axisymmetric case, some important and

interesting differences also exist.
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5. Non-axiswmetri¢ modes

The paper of ghorrami (1991) presents results for an unstable mtles

(with a growth rate that diminishes as Re _ -) for the particular case

n = 1. In this section we discuss the stability of such an asymmetric

disturbance.

We initially follow the same approach as that carried out in the

previous sections and apply these methods to the case n = 1,

q = 0.7. Fig.6 shows the variation of c o (which again is real) with a,

obtained from the solution of (3.8), (3.10). However, below a critical

value of _( = aO, say), we see co < 0, while above this value c o

becomes positive. We were able to continue the computation of

c o beyond ct0 using the numerical scheme described in Section 3,

However, since c0 > 0, and our numerical results suggested c 0 remained

real, a critical layer must be present at any point at which

90 = 0. Hence computation of such modes, according to Lin (1955),

must be carried out by extending the computation into complex r

space to avoid the singularity in the differential equation.

Although our numerical scheme performed extremely well, by its very nature

it is not suitable for obtaining solutions off the real r axis. (The

authors did attempt a Runge-Kutta scheme for treating (3.8), (3.10),

but extremely small grid sizes which required prohibitatively longer

computer times, were necessary for adequate resolution of these modes,

even for examples for which co < 0, i.e. for which no critical layer

existed. Further many spurious modes were generated with this technique.)

However, analysis below suggests why it may be possible to extend these

computations of (3.8), (3.10) into regimes where critical layers may

exist without any special modification of the scheme, or numerical

difficulties.

Let us initially confine our attention to values of a < ct0,
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for which the techniques and analysis of the previous section are

applicable without modification. In particular, the computedvalues of

_i obtained from (4.10) are shownon Fig.7 as points denoted by 0

for the case n = 1, q = 0.7, and are to be comparedwith the values

of _i obtained using the full viscous equation for the samecase,

at Re = 10000, as presented in Fig.7. The computed and asymptotic

values proved to be indistinguishable on the scale shown in Fig.7.

It is apparent that we are able to predict, using our asymptotic theory,

the location of a lower neutral point (at a = 0.05) without the

requirement of a further a << 1 substructure. Agreement between the

asymptotic and fully numerical results is excellent up to a = ¢tO,

the point to which our asymptotic results extend. Beyond _ = ctO,

the full viscous equations yield values of _i which are initially

seen to continue to increase but then rapidly drop in value to give an

upper neutral point.

For a > a O, it would appear that there are two distinct possibilities

to explain this behaviour.

The first, if co remains real, implies that a critical layer exists.

However, if we assume that

a=aO+_,

where << otO, and _ is taken to be positive.

c0 = _ E00 + 0(_2),

and to be consistant with (3.2), we must have that

is just above the critical value aO, then

(5.1)

As a result we expect

(5.2)

>> Re'l Suppose

that the location of the critical layer is at

asymptotic form for U(r)

ro=l __nq 1½
cto_co0

If this is sufficiently large then as

approximate to

r = rO, then using the

and W(r), we must have

(5.3)

r 4 r0, (3.8), (3.10)
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dGo I
= " r"o

dP 0 2nq

_'f r03

ro(n2+oto2ro 2)

GO " 2n(r.ro ) PO,

P0

(r-r 0) GO + r_r-----6.

(5.4)

(5.5)

Taking this system (and indeed higher order terms that have been

neglected) reveals that the solution for GO and P0 are regular

about r = r 0, i.e.

G0 = _ G0n (r-r0)n, (5.6)
n=0

P0 = _ P0n (r'r0)n+l, (5.7)
n=0

and hence no critical layer is required. This perhaps explains why we were

able to extend our numerical scheme beyond a = 0t0 without any special

modification or difficulties.

However, as a increases, r0 moves toward the centre of the

vortex (r=0). If co remains real, ultimately the presence of a

critical layer will become importantjin particular its effect will

be profound when r0 = 0(1), implying a - ct0 = 0(1). Perhaps it is this

penetration of the critical layer close to the vortex centre that

triggers the sharp drop off in growth rate ac i with a, to yield

the upper neutral point as seen in the fully viscous solutions in Fig.7.

However, the presence of the critical layer requires that a detour be

made into the complex r plane when considering (2.18) - (2.21). According

to Lessen et al. 1974 this detour is below the real axis if

Real {_'(r0)} > 0, and vice versa. Unfortunately, as remarked earlier,

our numerical scheme is confined to the real axis, and so we were unable

to carry out the computations for our asymptotic structure beyond a = ct0

with any degree of certainty.

A second possibility exists, namely that the inviscid solution of (3.8),
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(3.10) yields complexstable values of co for a > sO. This stable

inviscid decay rate would then counteract the unstable viscous

growth rate which could result in a rapid stabilising trend for _ > s0.

Unfortunately, our numerical schemewasunable to give a

categorical vindication of either of these two possibilities.
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6. Conclusion

In this paper we have presented asymptotic analyses which describe

and indeed confirm the additional modes of instability recently found

numerically for the "trailing-line vortex" by Khorrami (1991).

These modes are very different in nature from those reported previously,

being inviscidly neutral, but are clearly shown in this paper to

be destabilised by viscosity. Previously reported modes of instability have

been generally inviscidly unstable.

Although our investigation has been confined exclusively to the

''trailing-line vortex'', there is no reason why such mechanisms

should not operate in the same way for other vortex flows,

Finally, it must be emphasized again that the parallel flow

approximation has been employed throughout this paper, and an

interesting extension of this work would be to include the

effects of non-parallelism.
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